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Abstract 
Vector architecture is a scheme that utilizes data level 

parallelism. The idea is to take vector registers as operands, 
so that instructions and memory accesses operate on whole 
registers. Since elements within a vector have no 
dependencies on each other, vector processing allows more 
efficient computation through data parallelism. Due to no 
support for RISC-V vector instructions in gem5, our project 
is intended to provide a working subset that supports this 
kind of data-parallel execution. 

The goal of this project is to implement a subset of vector 
extensions to RISC-V in gem5, in order to achieve faster 
dense linear algebra computation. The implementation 
basically follows an existing RISC-V vector extension 
proposal [1], with a few modifications as the draft is not 
completed. This project implements some of the proposed 
components including vector registers and vector 
instructions for a basic working subset. The evaluation 
results show that the implemented vector processing 
improves the matrix computation performance by a large 
factor, and there exists future optimizations that can be 
made for a more complete architecture. 

1. Introduction 
RISC-V is an open source implementation of a reduced 

instruction set computing-based ISA. It’s completely open 
and freely available to academic and industry, and it’s 
compatible to all kinds of software and programming 
languages. The guiding principle of RISC-V is to make an 
ISA suitable for nearly any computing device. RISC-V is 
stable and keeps its own basic instruction set architecture 
unchanged. Unlike almost all the old architectures, RISC-
V can achieve those features by keeping independent from 
any single company's decision. 

Gem5 is a modular, open source simulation platform that 
supports different ISAs including x86. Its advanced 
simulation features provide RISC-V applications with a 
great environment to simulate. RISC-V implements the 
instruction sets for single core simulations in SE mode [1], 
including integer and multiply instructions, atomic 
instructions and floating-point instructions. 
 
 The traditional approach to computer architecture is 
incremental ISA, which must not only implement new ISA 
extensions but also implement all of the old extensions for 

the purpose of binary compatibility. But this requirement 
actually has significantly increased the content size of ISA 
over time. For RISC-V, it's a modularized ISA based on 
RV32l core. RV32I is the base 32-bit integer ISA (shown 
in figure 1) RV32l core is fixed and will never change. This 
provide a stable goal for developers and programmers to 
develop standard extensions. RISC-V can have 32 integer 
registers and 32 floating point registers. The memory is 
addressed by 8-bit bytes, but instructions will be formed 
into 32-bit address. Load and store of 8-16-bit items are the 
only instructions that can access to main memory. RISC-V 
increases a computer's speed and reduces its cost by fixing 
the location of its most significant bits [2]. It develops a 
specific bit arrangement to reduce multiplexers. RISC-V 
also wants to develop an efficient support for data level 
parallelism. Unlike the traditional SIMD architecture which 
needs old hardware recompilation, the vector design for 
RISC-V should be scalable, so that same program can get a 
full performance on machines with any vector length [2]. In 
this project, we only focus on the vector extension of RISC-
V, as an approach to enable faster dense linear algebra 
computation by exploiting data parallelism.  
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Figure 1: RV32I user-visible architectural state 
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2. Related Work 
This project is implemented under the specification in the 

GitHub repository riscv-v-spec, which is a base vector 
extension proposal to RISC-V, aiming at providing general 
support for data-level parallel processing [3]. The riscv-v-
spec repository contains several specification files: v-
spec.adoc, inst-table.adoc, vector-op-base.csv, vector-op-
vtypes, etc. There exists lots of differences in the 
specifications across different versions, and we use this 
particular v-spec.adoc version 0.5 because it comes with a 
detailed vector instruction table.  

The v-spec.adoc file introduces a general specification of 
the vector extension without specific implementation 
details, and the content covers vector CSRs, vector 
configuration instructions, vtypes, and vector instructions, 
which provides a basis of the essential components that 
need to be implemented to simulate RISC-V vector 
processing in gem5. 

The inst-table.adoc file illustrates all vector instructions 
and their bitfield encodings. These vector instructions are 
of size 32 bits, with most instructions indicating opcodes, 
vector register operands, destination vector registers, and a 
two-bit mask field. For example, figure 2 shows VADD and 
VSUB from the table. 

3. Vector Extension 
In this section we describe the implementation of vector 

extension to RISC-V in gem5. While there are existing code 
pieces leaving space to vector architecture in current gem5 
RISC-V, they are incomplete and lack explanations. In 
order to have the basic functionalities of vector 
computations, we need to build the essential related 
architecture components. Therefore, our implementation 
includes vector CSRs, vector registers as operands, decode 
of vector instruction bitfields, a subset of vector instructions 
and corresponding formats. 

3.1 Vector Extension 
In this project, we implement the fundamental vector 

CSRs, vl, along with 32 vector registers. vl is a WARL CSR 
that holds the current active vector length, where WARL 
stands for write any values, read legal values. The active 
vector length determines the number of elements processed 
by each vector instruction, and its value can be set with the 
instruction vsetvl. The vsetvl instruction details are 

explained in section 3.3. The implementation also includes 
32 vector registers, naming from v0 to v31, with each 
holding 4 elements of type uint32_t by default. 

3.2 Vector Operands 
There are two extended operand types used by the vector 

operands, sv and svf, representing int32_t and float element 
types respectively of the vector registers. The vector 
operands therefore include destination vector (vd) and 
source vectors (vs1, vs2, and vs3) of both types, and v0 is 
used for masking. In addition, vl CSRs is also included, it 
is an int register holding the value of type uint64_t, and can 
be set by instruction VSETVL. The code of this section can 
be found in gem5/src/arch/riscv/isa/operands.isa file. 

3.3 Vector Instructions 
Among all the 32-bit encoding instructions proposed by 

riscv-v-spec, we implement the ones that are necessary to 
our linear algebra computation experiments. These include 
vector configuration instructions, vector integer and 
floating-point compute instructions, vector load/store 
instructions, and vector register element movement 
instructions.  

The instruction encoding includes two bits of masking, 
indicating the scalar/vector shape of the result and the type 
of masking. m = 00 represents scalar shape result; m =01 
represents vector shape result; m = 10 represents vector 
operation that is enabled when v0[i] = 0; m = 11 represents 
vector operation that enabled when v0[i] = 1. 
VSETVL (vsetvl rd, rs1) - set active vector length in vl. If 
the requested application vector length (AVL) in rs1 is less 
than or equal to the maximum vector length (set to 4 in this 
project), set vl to AVL; otherwise set vl to the maximum 
vector length. This new active vector length is also written 
to rd. 
VADD (vadd vd, vs1, vs2) - add vs1 and vs2 element-wise, 
write each result to vd.  
VSUB (vsub vd, vs1, vs2) - subtract vs2 from vs1 element-
wise, write each result to vd. 
VXOR (vxor vd, vs1, vs2) - xor vs1 and vs2 element-wise, 
write each result to vd. 
VSEQ (vseq vd, vs1, vs2) - compare vs1 and vs2 element-
wise, write 1 to vd if they are equal, write 0 otherwise. 
VSLT (vslt vd, vs1, vs2) - compare vs1 and vs2 element-
wise, write 1 to vd if the element of vs1 is less than the 
element of vs2, write 0 otherwise.  

 

Figure 2: instruction table
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VMUL (vmul vd, vs1, vs2) - multiply vs1 and vs2 element-
wise, write each result to vd. 
VREM (vrem vd, vs1, vs2) - divide vs1 by vs2 element-
wise, write each remainder to vd. 
VMADD (vmadd vd, vs1, vs2) - multiply vs1 and vs2 
element-wise, write accumulated result to vd. 
VREDSUM (vredsum vd, vs1) - sum up the elements in vs1, 
write the result to vd. This takes a vector shape as input and 
produces a scalar shape. 
VLW (vlw vd, rs1) - load elements in continuous sequence 
from memory in 4-byte stride starting at the base address 
stored in rs1, write to vd. 
VSW (vsw vs3, rs1) - store elements in vs3 in continuous 
sequence to memory in 4-byte stride starting at the base 
address stored in rs1. 
VSXW (vsxw vs3, offset(rs1), vs2) - store elements in vs3 
to memory, with base address offset(rs1), and each element 
address calculated with corresponding offset indicated in 
vs2. 
VEXTRACT (vextract rd, vs1, rs2) - extract one element 
(indicated by rs2) from vs1, write to rd.  
VMERGE (vmerge vd, vs1, vs2) - merge elements from vs1 
and vs2 to vd, the mask determines whether to pick element 
from vs1 or element from vs2 to write. If mask is 00, write 
first element of vs1 to destination. 
VMERGEX (vmergex vd, rs1, vs2) - merge rs1 and 
elements from vs2 to vd, the mask determines whether to 
pick rs1 or element from vs2. If mask is 00, write rs1 to 
destination. 
We also implement floating-point versions of some of the 
instructions described above, including VFADD, VFSUB, 
VFMIN, VFREDSUM, VFMADD, and VFEXTRACT. 
The functionalities are quite similar to the integer version, 
except VFMADD. 
VFMADD (vfmadd vd, vs1, vs2, vs3) - multiply vs1 and 
vs2 element-wise, add corresponding element in vs3, write 
each result to vd. 

4. Evaluation 
First, we choose PolyBench to test our ISA structure. 

PolyBench is a collection of benchmarks containing static 
control parts. We can uniformize the execution and 
monitoring of kernels in this way. The features of 
PolyBench include: 
* Single file and tunable at compile time 
* non-null data initialization 
* no dead code elimination 
* clear kernel marking 
  In this simulation, we start with optimizing 2D 
multiplications kernels go on to optimize the code in the 
PolyBench suite. Our experiments explore the performance 
of RISC-V Vector Extension. In this work, we focus on the 
time consumption for the matrix multiplications. We run 
the experiment with in order CPU core and 
DDR3_1600_8x8 memory type. The reason we choose in 
order CPU rather than OOO is that the current pipelined 
CPU design in gem5 does not support multiple memory 

access in a single instruction. Especially, load instructions 
need to specify the EA in initiating phase and get the data 
during retirement. 
   3mm is a linear algebra kernel that consists of three 
matrix multiplications. The program will take A, B, C, D 
four matrix as input and gives G as the output. 
 

Input   

A P * Q 

B Q * R 

C R * S 

D S * T 

Output   

G P * T = （A * B ) * (C * F) 

Table 1: Input and output of 3mm benchmark 
 

Floyd Warshall problem is a graph algorithm which tries 
to find the shortest distances between every pair of vertices 
in a weighted directed graph. But in PolyBench we only 
compute the shortest path length. It takes a N x N matrix 
named “w” as input (w stands for weight/cost in the graph) 
and gives a N x N matrix named paths as output, where path 
represents the shortest path length. Linear sieve is an 
algorithm that finds all prime numbers between 2 and N. It 
takes N as an input and the prime number list as an output. 

We also implemented some functions in assembly, which 
contains the implemented vector instructions. These 
functions will be linked with C codes, to help with the 
PolyBench suite. These functions include vecadd, muladd, 
dotprod, vextract, fmuladd and fdotprod. The details of 
these functions can be found in Table X. 

 
Function Signature in C Description 

vecadd void vecadd(int len, int *X, 
int *Y, int *W); 

W[i] = X[i] + Y[i]; 

muladd void muladd(int len, int *X, 
int *Y, int *W); 

W[i] += X[i] + 
Y[i]; 

dotprod int dotprod(int len, int *X, 
int *Y, int stride); 

return sum_i{X[i] * 
Y[i][stride]}; 

vectract int vextract(int *X, int idx); return X[idx]; 

fmuladd void fmuladd(int len, float 
*X, float *Y, float *Z, float 
*W); 

W[i] = X[i] * Y[i] 
+ Z[i]; 

fdotprod float fdotprod(int len, float 
*X, float *Y, int stride); 

return sum_i{X[i] * 
Y[i][stride]} 
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Table 2: Functions implemented in assembly with vector 
instructions 

We evaluated all 3 benchmarks using the default settings 
of se.py in gem5. Figure7 shows the time consuming（time 
is measured in the unit of tick, it also can be represented by 
the number of instructions if divided by 500) of benchmarks 
in four different configurations: non-vector float, vector-
float, non-vector int, vector-int. Integers(int) and Float are 
different data types. Integer are whole numbers while 
floating types can hold real numbers such as “2.33”. Vector 
prefix means this is a data set for the test of RISC-V vector 
extension and non-vector prefix means this is for the 
original RISC-V testing. Mini, small medium and large 
means the sample dataset sizes which can be found in the 
head file of each benchmark. We can find out that RISC-V 
with vector extensions runs much faster compared to the 
original ones. 

 

3mm 
Float (Non-

vector) 
Float 

(vector) 
Int (Non-
vector) Int (vector) 

Mini 107862500 56632500 112928000 55393000 

Small 2334746500 1103654500 2383676500 1037788500 
Mediu

m 96942195500 
4203523700

0 
11491868550

0 
3916907800

0 

Large 
11156878222

500 
4769997427

000 
10663644964

000 
4432291467

500 
Table 3: Original data of 3mm benchmark evaluation 

 
 
Outliers: RISC-V vector extension can achieve higher 
performance for both float and int matrix multiplications 
 

 

Floyd 
Float (Non-

vector) 
Float 

(vector) 
Int (Non-
vector) Int (vector) 

Mini 1676146000 528316000 1640950000 446467000 

Small 
3896521550

0 
1298140850

0 
4666142250

0 
1078746650

0 

Mediu
m 

8302452935
00 

2704077425
00 

9952365825
00 

2234769925
00 

Table 4: Original data of Floyd benchmark evaluation 

 

 
Outliers: RISC-V vector extension can achieve higher 
performance for both float and int in graph problems. 
  

However, for Euler’s Sieve, the simulation results show 
that the performance of vector extension is even worse than 
the original settings. We think there are two reasons that 
may cause this situation: 

1. Too many multiplications of small integer such as 2, 3 
and 5 exist in calculation. For every composite integer X 
with its least prime factor P, we only sieve numbers in 
forms of X*Q s.t. Q <= P is a prime. Thus, for most 
numbers, the multiplication times are not large enough to 
benefit from this vector extension. 

2. Vector executes 4 multiplication in parallel in one 
circle while non-vector executes 1 serial multiplication per 
cycle. This is the basic logic of vector accelerator. But since 
we don't implement pipeline in the simulator, all 
instructions use 1 cycle equally. Henceforth, the 
optimization by reducing cycle-consuming instructions will 
not be shown in the results. 

 

Sieve Int (Non-vector) Int (vector) 

1000 10419000 13643000 

100000 1226985500 1529949500 

10000000 105233622500 152039048000 
Table 5: Original data of Sieve benchmark evaluation 

 

Figure 4: Floyd Evaluation Result 
 

Figure 3: 3mm Evaluation Result 
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These three evaluation cases represent 3 common 

situation which RISC-V might run into: 
1. 3mm is a standard matrix multiplication which will 

obviously benefit from vector accelerator. In our 
implementation, stride-load instructions are used to 
optimize the inner loop. 

2. Floyd has higher data dependence and a branch inside 
the loop, which are challenges to SIMD implementations. 

3. Euler's sieve is a quite challenging scenario with very 
high data dependency and complex control flow, which was 
considered not able to be vectorized. It might only gain a 
little performance in the real-world CPU but definitely will 
perform worse in the simulator. 

5. Conclusion 
In this project, we implemented vector extensions to 

RISC-V in gem5, an architecture that supports data level 
parallel execution. Under the existing vector extension 
proposal, we completed a subset of components, including 
vector CSRs, vector operands, and vector instructions. 
Overall, RISC-V vector extension will gain around more 
than 90% performance compared to original configuration. 
We use three different types of test cases to evaluate how 
will the vector extension react to unpredictable programs. 
For this version of proposal, future work such as additional 
vector CSRs and vector instructions can be done to get a 
well-designed implementation. Besides, the proposal is 
keeping updated and newer versions are also available, it’s 
worthwhile to compare performance between those 
versions of draft. 

6. Statement of Work 
Every member of our team made a valuable contribution 

to this project, with each has following emphasis: 
Xinyu Ma: cectorization of benchmarks, help adding 
vector instructions. 
Zhaoning Kong: working on gem5 to add vector 
instructions support.  

Weijia Yuan: evaluation and analyze the result of test 
case. Construct the report and introduction. 
Yajun Shi: constructing the report, presenting background 
information, related work, and implementation details. 
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