

1

Abstract
Vector architecture is a scheme that utilizes data level

parallelism. The idea is to take vector registers as operands,
so that instructions and memory accesses operate on whole
registers. Since elements within a vector have no
dependencies on each other, vector processing allows more
efficient computation through data parallelism. Due to no
support for RISC-V vector instructions in gem5, our project
is intended to provide a working subset that supports this
kind of data-parallel execution.

The goal of this project is to implement a subset of vector
extensions to RISC-V in gem5, in order to achieve faster
dense linear algebra computation. The implementation
basically follows an existing RISC-V vector extension
proposal [1], with a few modifications as the draft is not
completed. This project implements some of the proposed
components including vector registers and vector
instructions for a basic working subset. The evaluation
results show that the implemented vector processing
improves the matrix computation performance by a large
factor, and there exists future optimizations that can be
made for a more complete architecture.

1. Introduction
RISC-V is an open source implementation of a reduced

instruction set computing-based ISA. It’s completely open
and freely available to academic and industry, and it’s
compatible to all kinds of software and programming
languages. The guiding principle of RISC-V is to make an
ISA suitable for nearly any computing device. RISC-V is
stable and keeps its own basic instruction set architecture
unchanged. Unlike almost all the old architectures, RISC-
V can achieve those features by keeping independent from
any single company's decision.

Gem5 is a modular, open source simulation platform that
supports different ISAs including x86. Its advanced
simulation features provide RISC-V applications with a
great environment to simulate. RISC-V implements the
instruction sets for single core simulations in SE mode [1],
including integer and multiply instructions, atomic
instructions and floating-point instructions.

 The traditional approach to computer architecture is
incremental ISA, which must not only implement new ISA
extensions but also implement all of the old extensions for

the purpose of binary compatibility. But this requirement
actually has significantly increased the content size of ISA
over time. For RISC-V, it's a modularized ISA based on
RV32l core. RV32I is the base 32-bit integer ISA (shown
in figure 1) RV32l core is fixed and will never change. This
provide a stable goal for developers and programmers to
develop standard extensions. RISC-V can have 32 integer
registers and 32 floating point registers. The memory is
addressed by 8-bit bytes, but instructions will be formed
into 32-bit address. Load and store of 8-16-bit items are the
only instructions that can access to main memory. RISC-V
increases a computer's speed and reduces its cost by fixing
the location of its most significant bits [2]. It develops a
specific bit arrangement to reduce multiplexers. RISC-V
also wants to develop an efficient support for data level
parallelism. Unlike the traditional SIMD architecture which
needs old hardware recompilation, the vector design for
RISC-V should be scalable, so that same program can get a
full performance on machines with any vector length [2]. In
this project, we only focus on the vector extension of RISC-
V, as an approach to enable faster dense linear algebra
computation by exploiting data parallelism.

Implementing Vector Extensions to RISC-V in Gem5

Xinyu Ma
205080043

xinyuma@g.ucla.edu

Zhaoning Kong
005223528

jonnykong@cs.ucla.ed
u

Weijia Yuan
704946874

weijia@cs.ucla.edu

Yajun Shi
304946079

yajuns@outlook.com

Figure 1: RV32I user-visible architectural state

2

2. Related Work
This project is implemented under the specification in the

GitHub repository riscv-v-spec, which is a base vector
extension proposal to RISC-V, aiming at providing general
support for data-level parallel processing [3]. The riscv-v-
spec repository contains several specification files: v-
spec.adoc, inst-table.adoc, vector-op-base.csv, vector-op-
vtypes, etc. There exists lots of differences in the
specifications across different versions, and we use this
particular v-spec.adoc version 0.5 because it comes with a
detailed vector instruction table.

The v-spec.adoc file introduces a general specification of
the vector extension without specific implementation
details, and the content covers vector CSRs, vector
configuration instructions, vtypes, and vector instructions,
which provides a basis of the essential components that
need to be implemented to simulate RISC-V vector
processing in gem5.

The inst-table.adoc file illustrates all vector instructions
and their bitfield encodings. These vector instructions are
of size 32 bits, with most instructions indicating opcodes,
vector register operands, destination vector registers, and a
two-bit mask field. For example, figure 2 shows VADD and
VSUB from the table.

3. Vector Extension
In this section we describe the implementation of vector

extension to RISC-V in gem5. While there are existing code
pieces leaving space to vector architecture in current gem5
RISC-V, they are incomplete and lack explanations. In
order to have the basic functionalities of vector
computations, we need to build the essential related
architecture components. Therefore, our implementation
includes vector CSRs, vector registers as operands, decode
of vector instruction bitfields, a subset of vector instructions
and corresponding formats.

3.1 Vector Extension
In this project, we implement the fundamental vector

CSRs, vl, along with 32 vector registers. vl is a WARL CSR
that holds the current active vector length, where WARL
stands for write any values, read legal values. The active
vector length determines the number of elements processed
by each vector instruction, and its value can be set with the
instruction vsetvl. The vsetvl instruction details are

explained in section 3.3. The implementation also includes
32 vector registers, naming from v0 to v31, with each
holding 4 elements of type uint32_t by default.

3.2 Vector Operands
There are two extended operand types used by the vector

operands, sv and svf, representing int32_t and float element
types respectively of the vector registers. The vector
operands therefore include destination vector (vd) and
source vectors (vs1, vs2, and vs3) of both types, and v0 is
used for masking. In addition, vl CSRs is also included, it
is an int register holding the value of type uint64_t, and can
be set by instruction VSETVL. The code of this section can
be found in gem5/src/arch/riscv/isa/operands.isa file.

3.3 Vector Instructions
Among all the 32-bit encoding instructions proposed by

riscv-v-spec, we implement the ones that are necessary to
our linear algebra computation experiments. These include
vector configuration instructions, vector integer and
floating-point compute instructions, vector load/store
instructions, and vector register element movement
instructions.

The instruction encoding includes two bits of masking,
indicating the scalar/vector shape of the result and the type
of masking. m = 00 represents scalar shape result; m =01
represents vector shape result; m = 10 represents vector
operation that is enabled when v0[i] = 0; m = 11 represents
vector operation that enabled when v0[i] = 1.
VSETVL (vsetvl rd, rs1) - set active vector length in vl. If
the requested application vector length (AVL) in rs1 is less
than or equal to the maximum vector length (set to 4 in this
project), set vl to AVL; otherwise set vl to the maximum
vector length. This new active vector length is also written
to rd.
VADD (vadd vd, vs1, vs2) - add vs1 and vs2 element-wise,
write each result to vd.
VSUB (vsub vd, vs1, vs2) - subtract vs2 from vs1 element-
wise, write each result to vd.
VXOR (vxor vd, vs1, vs2) - xor vs1 and vs2 element-wise,
write each result to vd.
VSEQ (vseq vd, vs1, vs2) - compare vs1 and vs2 element-
wise, write 1 to vd if they are equal, write 0 otherwise.
VSLT (vslt vd, vs1, vs2) - compare vs1 and vs2 element-
wise, write 1 to vd if the element of vs1 is less than the
element of vs2, write 0 otherwise.

Figure 2: instruction table

3

VMUL (vmul vd, vs1, vs2) - multiply vs1 and vs2 element-
wise, write each result to vd.
VREM (vrem vd, vs1, vs2) - divide vs1 by vs2 element-
wise, write each remainder to vd.
VMADD (vmadd vd, vs1, vs2) - multiply vs1 and vs2
element-wise, write accumulated result to vd.
VREDSUM (vredsum vd, vs1) - sum up the elements in vs1,
write the result to vd. This takes a vector shape as input and
produces a scalar shape.
VLW (vlw vd, rs1) - load elements in continuous sequence
from memory in 4-byte stride starting at the base address
stored in rs1, write to vd.
VSW (vsw vs3, rs1) - store elements in vs3 in continuous
sequence to memory in 4-byte stride starting at the base
address stored in rs1.
VSXW (vsxw vs3, offset(rs1), vs2) - store elements in vs3
to memory, with base address offset(rs1), and each element
address calculated with corresponding offset indicated in
vs2.
VEXTRACT (vextract rd, vs1, rs2) - extract one element
(indicated by rs2) from vs1, write to rd.
VMERGE (vmerge vd, vs1, vs2) - merge elements from vs1
and vs2 to vd, the mask determines whether to pick element
from vs1 or element from vs2 to write. If mask is 00, write
first element of vs1 to destination.
VMERGEX (vmergex vd, rs1, vs2) - merge rs1 and
elements from vs2 to vd, the mask determines whether to
pick rs1 or element from vs2. If mask is 00, write rs1 to
destination.
We also implement floating-point versions of some of the
instructions described above, including VFADD, VFSUB,
VFMIN, VFREDSUM, VFMADD, and VFEXTRACT.
The functionalities are quite similar to the integer version,
except VFMADD.
VFMADD (vfmadd vd, vs1, vs2, vs3) - multiply vs1 and
vs2 element-wise, add corresponding element in vs3, write
each result to vd.

4. Evaluation
First, we choose PolyBench to test our ISA structure.

PolyBench is a collection of benchmarks containing static
control parts. We can uniformize the execution and
monitoring of kernels in this way. The features of
PolyBench include:
* Single file and tunable at compile time
* non-null data initialization
* no dead code elimination
* clear kernel marking
 In this simulation, we start with optimizing 2D
multiplications kernels go on to optimize the code in the
PolyBench suite. Our experiments explore the performance
of RISC-V Vector Extension. In this work, we focus on the
time consumption for the matrix multiplications. We run
the experiment with in order CPU core and
DDR3_1600_8x8 memory type. The reason we choose in
order CPU rather than OOO is that the current pipelined
CPU design in gem5 does not support multiple memory

access in a single instruction. Especially, load instructions
need to specify the EA in initiating phase and get the data
during retirement.
 3mm is a linear algebra kernel that consists of three
matrix multiplications. The program will take A, B, C, D
four matrix as input and gives G as the output.

Input

A P * Q

B Q * R

C R * S

D S * T

Output

G P * T = （A * B) * (C * F)

Table 1: Input and output of 3mm benchmark

Floyd Warshall problem is a graph algorithm which tries
to find the shortest distances between every pair of vertices
in a weighted directed graph. But in PolyBench we only
compute the shortest path length. It takes a N x N matrix
named “w” as input (w stands for weight/cost in the graph)
and gives a N x N matrix named paths as output, where path
represents the shortest path length. Linear sieve is an
algorithm that finds all prime numbers between 2 and N. It
takes N as an input and the prime number list as an output.

We also implemented some functions in assembly, which
contains the implemented vector instructions. These
functions will be linked with C codes, to help with the
PolyBench suite. These functions include vecadd, muladd,
dotprod, vextract, fmuladd and fdotprod. The details of
these functions can be found in Table X.

Function Signature in C Description

vecadd void vecadd(int len, int *X,
int *Y, int *W);

W[i] = X[i] + Y[i];

muladd void muladd(int len, int *X,
int *Y, int *W);

W[i] += X[i] +
Y[i];

dotprod int dotprod(int len, int *X,
int *Y, int stride);

return sum_i{X[i] *
Y[i][stride]};

vectract int vextract(int *X, int idx); return X[idx];

fmuladd void fmuladd(int len, float
*X, float *Y, float *Z, float
*W);

W[i] = X[i] * Y[i]
+ Z[i];

fdotprod float fdotprod(int len, float
*X, float *Y, int stride);

return sum_i{X[i] *
Y[i][stride]}

4

Table 2: Functions implemented in assembly with vector
instructions

We evaluated all 3 benchmarks using the default settings
of se.py in gem5. Figure7 shows the time consuming（time
is measured in the unit of tick, it also can be represented by
the number of instructions if divided by 500) of benchmarks
in four different configurations: non-vector float, vector-
float, non-vector int, vector-int. Integers(int) and Float are
different data types. Integer are whole numbers while
floating types can hold real numbers such as “2.33”. Vector
prefix means this is a data set for the test of RISC-V vector
extension and non-vector prefix means this is for the
original RISC-V testing. Mini, small medium and large
means the sample dataset sizes which can be found in the
head file of each benchmark. We can find out that RISC-V
with vector extensions runs much faster compared to the
original ones.

3mm
Float (Non-

vector)
Float

(vector)
Int (Non-
vector) Int (vector)

Mini 107862500 56632500 112928000 55393000

Small 2334746500 1103654500 2383676500 1037788500
Mediu

m 96942195500
4203523700

0
11491868550

0
3916907800

0

Large
11156878222

500
4769997427

000
10663644964

000
4432291467

500
Table 3: Original data of 3mm benchmark evaluation

Outliers: RISC-V vector extension can achieve higher
performance for both float and int matrix multiplications

Floyd
Float (Non-

vector)
Float

(vector)
Int (Non-
vector) Int (vector)

Mini 1676146000 528316000 1640950000 446467000

Small
3896521550

0
1298140850

0
4666142250

0
1078746650

0

Mediu
m

8302452935
00

2704077425
00

9952365825
00

2234769925
00

Table 4: Original data of Floyd benchmark evaluation

Outliers: RISC-V vector extension can achieve higher
performance for both float and int in graph problems.

However, for Euler’s Sieve, the simulation results show
that the performance of vector extension is even worse than
the original settings. We think there are two reasons that
may cause this situation:

1. Too many multiplications of small integer such as 2, 3
and 5 exist in calculation. For every composite integer X
with its least prime factor P, we only sieve numbers in
forms of X*Q s.t. Q <= P is a prime. Thus, for most
numbers, the multiplication times are not large enough to
benefit from this vector extension.

2. Vector executes 4 multiplication in parallel in one
circle while non-vector executes 1 serial multiplication per
cycle. This is the basic logic of vector accelerator. But since
we don't implement pipeline in the simulator, all
instructions use 1 cycle equally. Henceforth, the
optimization by reducing cycle-consuming instructions will
not be shown in the results.

Sieve Int (Non-vector) Int (vector)

1000 10419000 13643000

100000 1226985500 1529949500

10000000 105233622500 152039048000
Table 5: Original data of Sieve benchmark evaluation

Figure 4: Floyd Evaluation Result

Figure 3: 3mm Evaluation Result

5

These three evaluation cases represent 3 common

situation which RISC-V might run into:
1. 3mm is a standard matrix multiplication which will

obviously benefit from vector accelerator. In our
implementation, stride-load instructions are used to
optimize the inner loop.

2. Floyd has higher data dependence and a branch inside
the loop, which are challenges to SIMD implementations.

3. Euler's sieve is a quite challenging scenario with very
high data dependency and complex control flow, which was
considered not able to be vectorized. It might only gain a
little performance in the real-world CPU but definitely will
perform worse in the simulator.

5. Conclusion
In this project, we implemented vector extensions to

RISC-V in gem5, an architecture that supports data level
parallel execution. Under the existing vector extension
proposal, we completed a subset of components, including
vector CSRs, vector operands, and vector instructions.
Overall, RISC-V vector extension will gain around more
than 90% performance compared to original configuration.
We use three different types of test cases to evaluate how
will the vector extension react to unpredictable programs.
For this version of proposal, future work such as additional
vector CSRs and vector instructions can be done to get a
well-designed implementation. Besides, the proposal is
keeping updated and newer versions are also available, it’s
worthwhile to compare performance between those
versions of draft.

6. Statement of Work
Every member of our team made a valuable contribution

to this project, with each has following emphasis:
Xinyu Ma: cectorization of benchmarks, help adding
vector instructions.
Zhaoning Kong: working on gem5 to add vector
instructions support.

Weijia Yuan: evaluation and analyze the result of test
case. Construct the report and introduction.
Yajun Shi: constructing the report, presenting background
information, related work, and implementation details.

References
[1] RISC5: Implementing the RISC-V ISA in gem5. ACM
ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://carrv.github.io/2017/papers/roelke-risc5-
carrv2017.pdf
[2] Design of the RISC-V Instruction Set Architecture.
Technical Report No. UCB/EECS-2016-1
http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-
2016-1.html
[3] RISC-V, riscv-v-spec, 2018. GitHub repository,
https://github.com/riscv/riscv-v-spec
[4] PolyBench 4.0
http://www.cs.colostate.edu/AlphaZsvn/Development/trun
k/mde/edu.csu.melange.alphaz.polybench/polybench-
alpha-4.0/polybench.pdf

Figure 5: Sieve Evaluation Result

